Sochacki Park Monitoring Data Summary 2020

Brian Vlach Sr. Water Resources Manager

Sochacki Park Sub-watershed Assessment

- Sub-watershed Assessment conducted to understand and improve the water quality of the wetlands in Sochacki Park.
 - Identify sources of pollutant loading
 - > Watershed
 - > Wetlands
 - Implement Best Management Practices (BMP) to Improve Water Quality
- Partnership Agencies
 - Golden Valley
 - Robbinsdale

Joint Powers Agreement

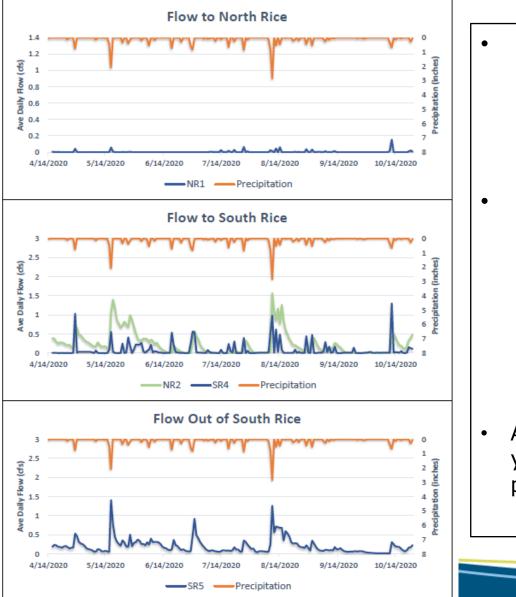
- Three Rivers Park District
- Bassett Creek Watershed Management Commission
- Objective
 - Understand the ecological health of the wetlands
 - Identify BMP's to improve ecological health of the wetlands, improve aesthetics, and provide recreation and education opportunities
 - Engage Stakeholders throughout the process

Sochacki Park Sub-watershed Assessment Process

- Monitoring 2020 & 2021
 - Watershed Pollutant Loading Estimates
 - Automated Sampling Equipment
 - Flow & Velocity Measurements
 - > Water Quality Nutrient Concentrations (TP, SRP, TSS, & TN)
 - Wetlands
 - > Water Quality (TP, SRP, Chl-a, and Secchi Depth)
 - Aquatic Vegetation
 - Dissolve Oxygen
 - Sediment Core Analysis
 - > MnRAM Assessing wetland function & value
 - > Water Levels
- Watershed & Wetland Modeling (2021-2022)
 - Calibrate Watershed and Wetland Model to monitoring Data
 - Identify Sources of Pollutant Loading
 - Develop recommended BMP's that would result in pollutant load reductions to improve water quality
- Implement BMP Practices to Improve Water Quality
 - Identify those BMP practices that have a pollutant load reduction cost-benefit
 - Develop BMP implementation plan
 - Implementation of Project in the watershed and wetlands

Bassett Creek Watershed Management Commission Barr Engineering Report 2013

- Assessment was completed on North and South Rice in 2013
 - Barr. (2013). Lake Water Quality Study Northwood Lake, North Rice Pond and South Rice Pond. Minneapolis, MN
- Water quality goals for the wetlands in the report
 - Goals were set by the BCWMC
 - Total phosphorus = $75 \ \mu g/L$
 - Chlorophyll-a = $40 \ \mu g/L$
 - Secchi = 1 m
 - Since these are wetlands and not lakes, there are no state water quality standards

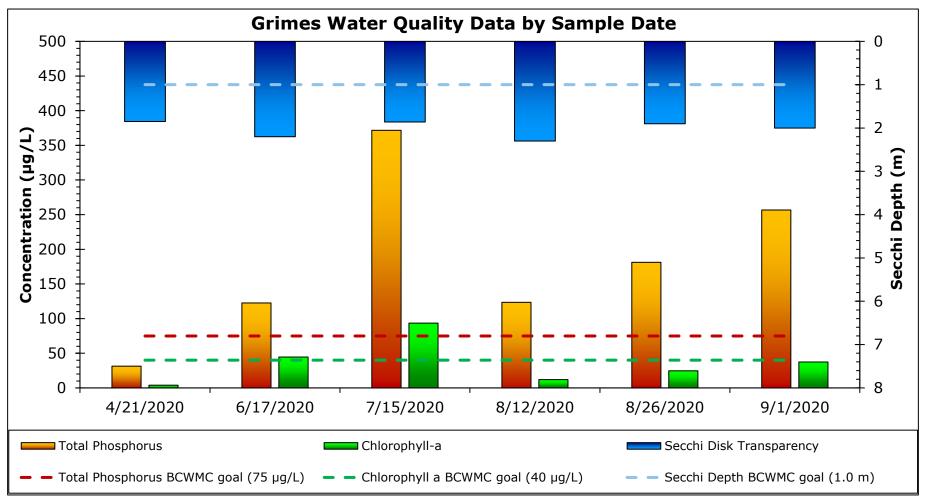

Sochacki Park Ponds

Monitoring

- 3 wetlands-water quality
 - Grimes
 - North Rice
 - South Rice
- 4 stormwater monitoring sites
- 2 sites where grab water samples were collected during storm events
- 5 sediment core locations
- Preliminary Data 2021
 - Data presented on the following slides

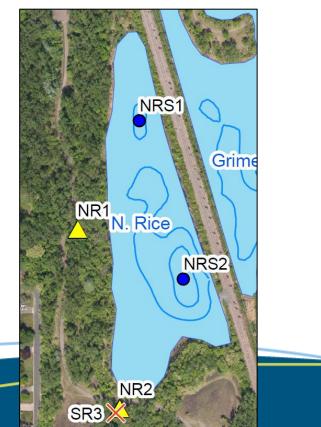
Sochacki Park Precipitation and Flow 2020

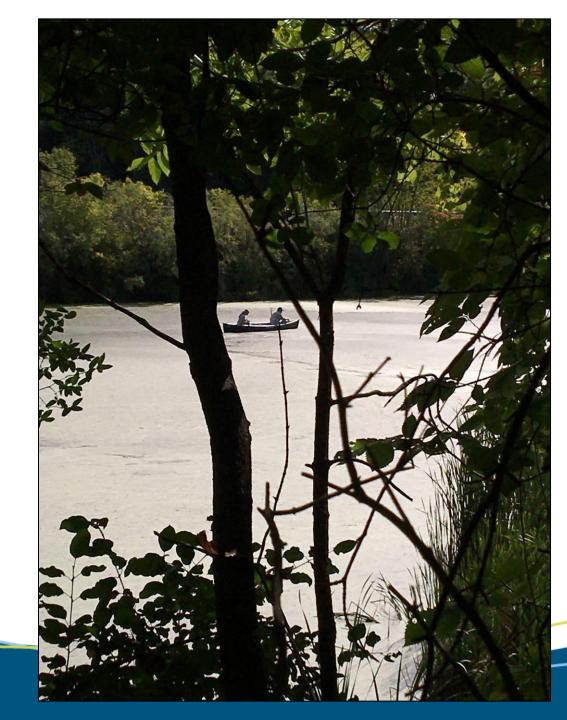
- 2020 Calendar Year
 - Precipitation below average
 - 2020: 26 inches
 - 20-year average: 30 inches


Notable Rain Events

- May 16-17th 2.53 inches
- August 9-10th 3.65 inches
- The rain events account for 11% to 15% of the sampling site total flow volumes.
- Advantage of monitoring two years allows for variations in precipitation conditions.

Grimes Pond

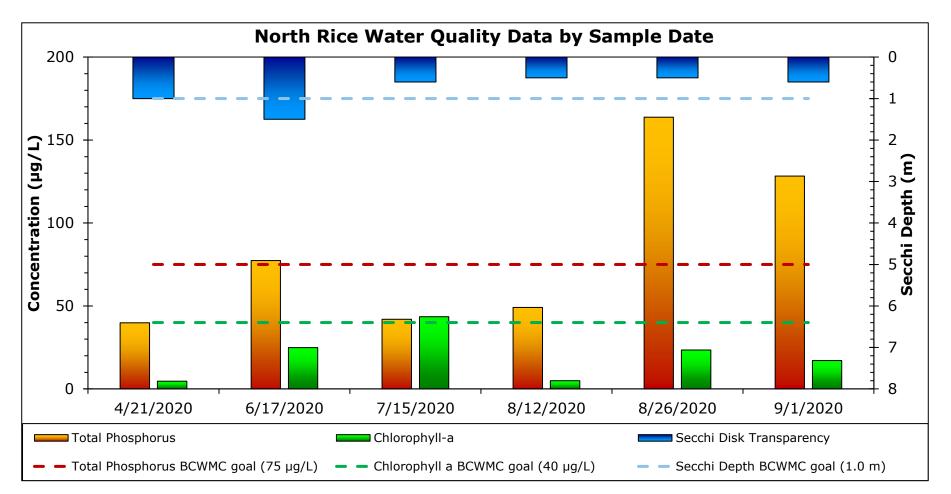

- A culvert that flows into Grimes, GR6, seems to be main source of stormwater
 - Very little flow only 2 grab samples collected

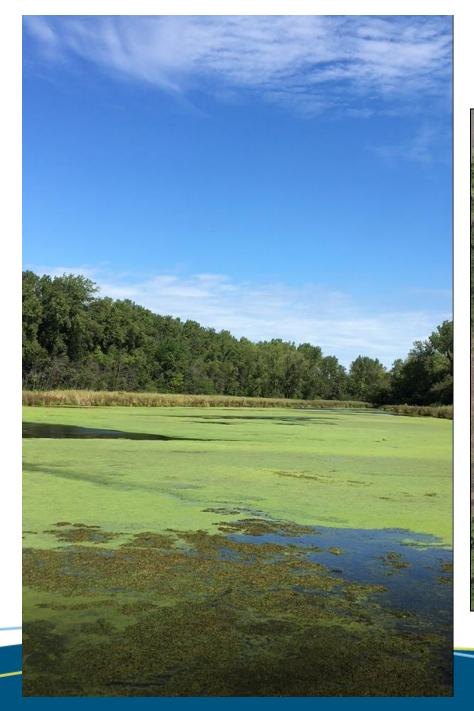


- Not meeting TP goals most of season
- Meeting Chlorophyll-a goals most of season
- Meeting secchi depth goals (max depth = 2.19 m)

North Rice Pond

- Receives water from Grimes and NR1
 - There may be other smaller channels – but NR1 is the primary input


NR1 – North Rice Site 1


- Only has flow during rain events
 - Sandy soils, so water infiltrates
- Very little flow into North Rice pond

• 0.003 x 10⁶ m³

- Low loading due to low flow even though has high concentrations
 - TP: 2 lbs/yr
 - TN: 12 lbs/yr
 - TSS: 283 lbs/yr
 - Chlorides: 0 lbs/yr

- Meeting TP goals until August
- Meeting Chlorophyll-a goals most of season
- Not meeting secchi depth goals (max depth = 1.58 m)
 - Pond is shallow and staff could see bottom of pond at every visit.

South Rice Pond

Receives water from

- North Rice via NR2
- SR3
 - a small culvert that only runs during storm events
 - Has very little flow and lower concentrations
 - 4 grab samples collected
 - SR4

NR2 – North Rice outlet

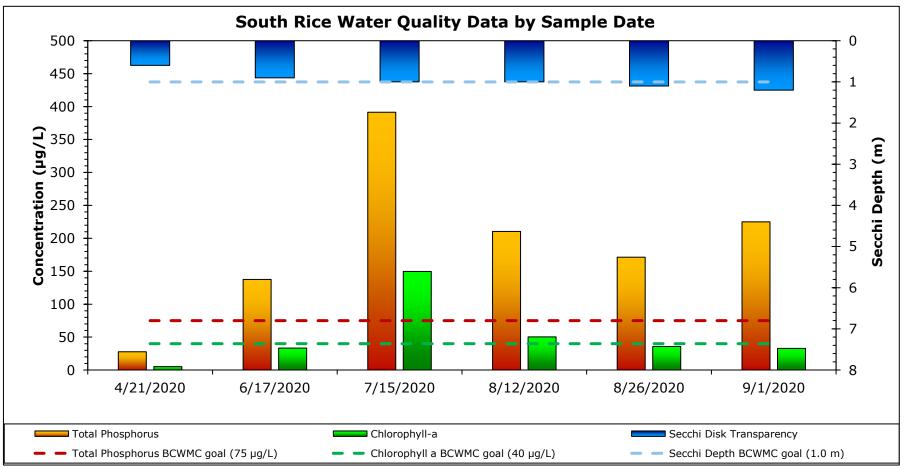
- Flows out of North Rice and into South Rice
- Lowest nutrient and TSS concentrations of the sites
 - Has highest chloride concentrations
- Highest flow of sites
 - 0.15 x 10⁶ m³
- Has average nutrient loading and high chloride loading
 - TP: 50 lbs/yr
 - TN: 459 lbs/yr
 - TSS: 1,900 lbs/yr
 - Chlorides: 45,700 lbs/yr

SR4 – South Rice site 4

Double culvert that is dry until rain events

- Flows into South Rice
- Highest average TP and SRP concentrations of the sites
- Low flow since only during storm events
 - 0.05 x 10⁶ m³
- Average nutrient loading
 - TP: 30 lbs/yr
 - TN: 213 lbs/yr
 - TSS: 3,900 lbs/yr
 - Chlorides: 577 lbs/yr

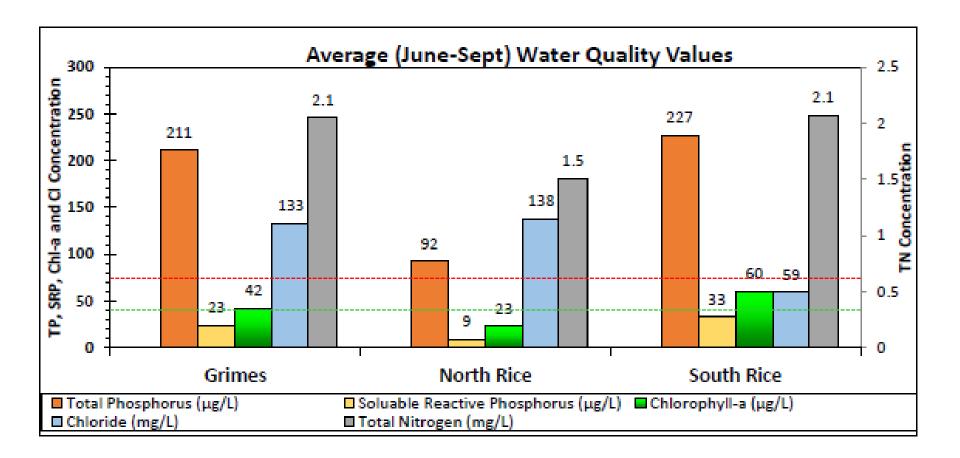
SR4 – South Rice site 4 – other details


Downstream of site

- Quite a bit of concrete and building materials
- Channel is eroded due to heavy flow through this area

Upstream side of culvert

 Grates collect a lot of detritus/debris that is high in nutrients



- Not meeting TP goals most of season
- Meeting Chlorophyll-a goals most of season
- Meeting secchi depth goals for half of season (max depth = 1.34 m)
 - Pond is shallow and staff could see bottom of pond at every visit

SR5 – South Rice outlet

- Flows out of South Rice
 - There is a 2nd outlet channel with similar flows
- Average concentrations
- Measured flow is comparable to flow into South Rice
 - 0.13 x 10⁶ m³
- Has highest loading of the sites except for chlorides
 - TP: 74 lbs/yr
 - TN: 526 lbs/yr
 - TSS: 9,300 lbs/yr
 - Chlorides: 28,700 lbs/yr

Other monitoring

- Dissolved oxygen
 - April and June had higher levels, but rest of season was anoxic at all ponds
 - Due to low oxygen levels, bacteria do not efficiently break down decaying material
- Vegetation
 - Thick Coontail
 - Lots of duckweeds
 - 2013 study noted that Curly-leaf pondweed (CLP) was only found in South Rice
 - CLP was found in all 3 ponds in the spring but not in fall due to normal die off
- Sediment Cores
 - Collected in January 2021
 - Awaiting results to see influence of sediment phosphorus on water quality

Sochacki Park Sub-watershed Assessment Next Steps

- Stakeholder Engagement Ongoing 2021/2022
- Continue Monitoring Efforts Summer 2021
- Process and Summarize Monitoring Data Fall/Winter 2021
- MnRAM Wetland Function & Value Analysis Fall/Winter 2021
- Modeling of Watershed January/February 2022
- Modeling of Wetlands March/April 2022
- Modeling Simulations to evaluate potential watershed BMPs and wetland management options – May 2022
- Sochacki Park Sub-watershed Assessment Report June 2022
 - Phosphorus Load reductions necessary to achieve water quality goals
 - Cost-benefit analysis
 - Implementation Plan